FUTURE CONNECTIVITY & IN-VEHICLE CYBERSECURITY: KNOW YOUR RIGHTS

Fighting on Two Fronts

GILAD BANDEL

VP Product and Marketing Arilou Automotive Cybersecurity

Gilad.Bandel@nng.com

CENTER FOR AUTOMOTIVE RESEARCH

AGENDA

- Influencing factors
- Strategy
- Homeland security
- Fighting on two fronts
- Embedded positions
- Decisive tactics

Debrief

ARILOU AUTOMOTIVE CYBERSECURITY

Your trusted independent security partner

- Automotive cybersecurity pioneer since 2012
- Independent member of global automotive software supplier,

NNG Group since 2016

- **SENTINEL** Firewall & Intrusion Detection/Prevention Systems (IDS/IPS):
 - SENTINEL-ETH IDS/IPS for Automotive Ethernet
 - SENTINEL-CAN IDS/IPS for CANbus and SAE J1939 commercial vehicles
- Secure Boot for ECUs
- Professional services:
 - ISO/SAE 21434 Consulting for compliance
 - **TARA** Automotive Threat Analysis & Risk Assessment

IVI (IN-VEHICLE INFOTAINMENT) CYBERSECURITY

Influencing factors

INFLUENCING FACTORS

Growing concern

INDUSTRY DYNAMICS GENERATE MANY BENEFITS BUT ALSO SHORTCOMINGS

- Connected vehicles create safer and comfortable driving experience
- Cyber risks to safety, reliability, and privacy
- Industry strives to prevent hackers from inflicting damages
- Regulation require OEMs to comply with cybersecurity standards
- Example of IVI (In-Vehicle Infotainment) system protection for homologation

Strategy

ISO/SAE 21434 COMPLIANCE PROCESS

- Cybersecurity culture adopt cybersecurity awareness for all processes
- Cybersecurity concept assets classification, attack paths, damage scenarios
- TARA Threat analysis and Risk assessment
- CAL set the **Cybersecurity Assurance Level** select risks to handle
- Product development based on CAL and according to V Model
- Validation demonstrate cybersecurity implementation
- Production control plan with all cybersecurity measures
- Operation and Maintenance support, incident mitigation and updates
- End of support and decommissioning of the vehicle

AUTOMOTIVE THREAT ANALYSIS AND RISK ASSESSMENT (TARA)

Analyze the current and planned automotive cyber-security posture to evaluate vehicle cyber-security maturity

Document

- Risks
- Weak points
- Vulnerabilities
- Exposures
- Predicted attack vectors
- Kill chains

Sorted by severity and probability

Generate a prioritized and optimized plan for risk reduction using improved

- Cyber-security architecture
- Design
- Components
- Intrusion detection/prevention
- Endpoint protection
- Cloud security

Risk probability	RISK SEVERITY						
	Catastrophic A	Hazardous B	Major C	Minor D	Negligible E		
Frequent 5	6A	5B	5C	5D	5E		
Occasional 4	4A	4B	40	4D	4E		
Remote 3	ЗА	ЗB	ЗC	ЗD	ЗE		
Improbable 2	2A	2B	2C	2D	2E		
Extremely improbable 1	1A	1B	1C	1D	1E		

CAL (CYBERSECURITY ASSURANCE LEVEL) DETERMINATION

- CAL classification determines the level of rigor with which cybersecurity activities are performed
- CAL, need to know an impact, attack vector and feasibility, deriving from the ISO 26262 standard:
 - ✓ Impact rating
 - ✓ Risk-based approach
 - Independence of cybersecurity assessment
- A CAL can be used to select methods:
 - For development and verification;
 - To identify and analyze vulnerabilities;
 - ✓ For cybersecurity assessment.

		Attack Vector				
		Physical	Local	Adjacent	Network	
Impact	Negligible	-	-	-	-	
	Moderate	CAL1	CAL1	CAL2	CAL3	
	Major	CAL1	CAL2	CAL3	CAL4	
	Severe	CAL2	CAL3	CAL4	CAL4	

Homeland security

SECURE-BOOT

Chain-of-Trust

- Hackers might attempt to load their rouge software on to the IVI
- Digital rights might be infringed: such as unlicensed pirate software or copied maps
- The ROM micro-bootloader authenticates the Arilou Secure Boot, and boots it
- Arilou Secure Boot authenticates the OS (Operating System) header and image, and boots it

Fighting on two fronts

IN-VEHICLE INFOTAINMENT (IVI) CYBERSECURITY

Fighting on two fronts

THE IVI IS VULNERABLE ON TWO FRONTS

It is a gateway between the external world and the In-Vehicle Network (IVN)

- 1. Attackable remotely via the cellular network.
- 2. Attackable via the IVN and attacking the IVN.

The 28th North Gloucestershire Regiment face off against Napoleonic forces on two fronts

A Mobile Enemy (First Front)

REMOTE ATTACKS ARE THE MOST SEVERE THREAT TO THE VEHICLE

External Cellular

- Incoming traffic from the cellular network
- Outgoing traffic to the cellular network

In the Trenches (Second Front)

IVNS ARE A COMMON TARGET USED TO ACCESS ECUS (ELECTRONIC CONTROL UNIT)

- Incoming traffic from the IVN
 - IVI is the target
 - A step in the kill chain
 - Using the IVI as a relay
- Outgoing traffic to the IVN
 - Destination is another ECU
 - Central Gateway, rather than IVI has cellular-modem
 - IVI and Central Gateway are combined

Attack on ECU, via c-modem on IVI, on CAN or J1939 IVN

MORE ATTACK VECTORS

In the Trenches

Attack on ECU, via c-modem on IVI, on Ethernet IVN Attack o

Attack on ECU and IVI, via c-modem on GW, on Ethernet IVN

Attack on ECU, via c-modem on IVI, on Ethernet IVN

BLUETOOTH AND WI-FI

In the Trenches

- The IVI has additional connectivity:
 - Bluetooth with mobile phone that can be used as a tool to attack the IVI and the vehicle
 - Wi-Fi as a hotspot can be used as a tool to attack the IVI and the vehicle

EVENTS HISTORY

Chronic of enemy achievements

- 2010 Using the remotely controlled immobilizer system, over 100 cars were grounded in Texas, US using insider privileges
- 2014 Arilou gains access to major OEM vehicle network using through the IVI, gaining control over hundreds thousands of vehicles (telnet port, SMS BoF, open AT commands interface and more)
- 2016 Gaining control over connected car service through vulnerabilities found in the web portal enabling locking, unlocking, taking over the vehicle, etc.
- 2019 Thousand of user accounts hacked through GPS tracking application using brute force attack enabling location tracing, shutting the engine while the vehicle in on the move, etc.
- 2019 Hardcoded credentials vulnerability in thousands of cars exposing them to attacks enabling private information retrieval from the vehicle
- 2020 Leaked credentials of OEM internal systems create channel to inject malware to be later used for malicious activities creating a cascading effect.

Embedded Positions

Embedded Positions

THE IVI IS VULNERABLE TO RISKS RELEVANT TO ANY EMBEDDED DEVICE

- Over 50% of the vehicle vulnerabilities detected in the IVI
- Legacy system developed over many years with multiple layers for code and patches
- Compromised boot sequence
 - Old or unsecure flash image. Embedded malware
- Tampered storage
 - Modified SW modules or data can be loaded

- Firmware update from rogue source
 - Includes code that will cause malfunction or allow remote control
 - Vulnerability and exposure opportunism (BOF Buffer overflow or open port)
 - Causes IVI misbehaviour
 - Automotive Ethernet IVN (using IP) increases the chance of remote attacks on connected ECUs
 - Aftermarket device in some cases without OEM control

Connected

IVI

IVN access

Embedded Positions

DEFENSIVE MANEUVERS

There are numerous reasons to secure the IVI

- The most targeted ECU
 - On CAN, attacker needs to switch protocol
 - On Ethernet, IP is used end-to-end
- Global Regulation
 - UNECE WP.29 (UNR 155) and equivalent in non-participating countries
- Brand/Reputation Damage
 - Mainly to OEM

Embedded Positions

A SUITABLE ARSENAL

Use TARA to determine the most effective response.

- Secure by Design, Development Process and Hardening (SW & HW)
- Link protection between server and endpoint, P2P prevention
- Endpoint Detection and Response (EDR)
 - Private APN
 - Secure Boot, Secure Module Loading
 - Host Intrusion Detection System (HIDS)
- Network Intrusion Detection/Prevention System (NIDS/NIPS)
 - Message Format, Field Value Range, Change of Rate Values, Periodic Messages, Correlation between signals,
 Vehicle Context, Authentication Failure, Media Access Control (MAC), Excessive Message Rate

Decisive Tactics

Decisive Tactics

IDS/IPS IS VITAL TO VEHICLE CYBERSECURITY

It is the only vehicle component dedicated to cybersecurity protection.

- IDS (Intrusion Detection System)
 - Detection and reporting (only)
 - SIEM (Security Information and Event Management) ==>
 - VSOC (Vehicle Security Operations Center) ==>
 - **CERT** (Cyber Emergency Response Team)

- IPS (Intrusion Prevention System)
 - Stop attacks by taking intrusive actions
 - Dropping frames
 - Disabling offending components
 - Excluding non essential components

Decisive Tactics

INSPECTING THE CELLULAR – INCOMING TRAFFIC

Incoming traffic from the cellular to the IVI should be inspected, in case the IVI is the target or used as a bridge to the IVN.

Decisive Tactics

INSPECTING THE IVN TRAFFIC – INCOMING AND OUTGOING TRAFFIC

Incoming and outgoing traffic from between the IVI and the IVN should be inspected.

BLUETOOTH AND WI-FI PROTECTION

Decisive Tactics

- Bluetooth incoming traffic inspection for attack attempts detection
- Wi-Fi incoming traffic inspection for attack attempts detection

GNSS - Global Navigation Satelite System, V2V - Vehice-to-Vehicle, V2i - Vehicle-to-Infrastructure, P/T - Powertrain, ECU - Electronic Control Unit, OBD - On Board Diagnostic

Debrief

Debrief

THE IVI IS A CONNECTED DEVICE

The IVI interfaces both the outside world and the in-vehicle network.

It should be well protected!

	CANbus/		Cellular Detection/			
Interface	Ethernet	Direction	Modem	Prevention	Implementation	Importance
Cellular	Not relevant	Incoming	Yes	Both	IVI	Very High
Cellular	Not relevant	Outgoing	Yes	Both	IVI	Low
Cellular	Not relevant	Incoming	No	Both	IVI/GW	Critical
Cellular	Not relevant	Outgoing	No	Both	IVI/GW	Low
In-Vehicle	CANbus	Incoming	Both	Detection	IVI/GW	High
In-Vehicle	CANbus	Outgoing	Both	Detection	IVI/GW	Very High
In-Vehicle	CANbus	Incoming	Both	Prevention	IVI	High
In-Vehicle	CANbus	Outgoing	Both	Prevention	IVI	Very High
In-Vehicle	Ethernet	Incoming	Yes	Both	IVI/GW	High
In-Vehicle	Ethernet	Outgoing	Yes	Both	IVI/GW	Very High
In-Vehicle	Ethernet	Incoming	No	Both	IVI/GW	Critical
In-Vehicle	Ethernet	Outgoing	No	Both	IVI/GW	Very High

For a live demo please contact us at

Gilad.Bandel@nng.com

TAKE HOME MESSAGES

Debrief

- Tier-1's and OEMs need to implement proper security measures if they are to protect the vehicle and IVI from dangerous attacks
- Several methods needs to be employed for a robust, defense in depths multi layer protection approach
- Methodologies such as secure by design, network segregation, secured software development process, supply chain assurance, etc.
- Secure boot protects the authenticity of the software and data used
- The IDS/IPS is the only dedicated, devoted and independent component aimed at the vehicle cybersecurity protection
- For more information, please see our web site https://ariloutech.com/
- Please follow us on LinkedIn https://www.linkedin.com/company/arilou/

ARILOU Automotive Cybersecurity Part of NNG Group

THANK YOU FOR YOUR

GILAD BANDEL VP Product and Marketing

Email: Gilad.Bandel@nng.com Tel: +972 (54) 246-0006 Website: www.ariloutech.com

