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ABSTRACT 

The Digital Body Development System (DBDS) is 4 year 
project to shorten the time to launch vehicles by improving the 
launch problem solving process.  The project is based on two 
concepts: virtual functional build and an intelligent agent based 
decision support system.  This paper presents a novel 
architecture for the decision support system that streamlines the 
launch process through the integration of a virtual assembly 
simulation, problem identification, and solution generation and 
evaluation. Following the virtual functional build process, the 
architecture deploys a number of multi-agent systems to 
provide system functionality, such as problem knowledge 
retrieval, solution generation, modification, and evaluation.  
The architecture has been implemented and will be explained 
on a simple 2-D door model and a casebase of 100 cases.  
Results show that the DBDS can find the correct solution much 
faster than a random search and can automatically implement 
and evaluate the solution. 

INTRODUCTION 

The car body is one of the most important vehicle systems.  
In terms of vehicle model launch it can be considered the most 
important vehicle system as   

1. it is often the bottleneck during launch,  
2. it is often the most costly system (powertrain 

costs can be spread across multiple programs),  
3. platform development and capital investment 

costs limit the car manufacturer’s ability to 
introduce new models (model must run for a 
certain length of time to recoup investment), and   

4. it is the first system the customer sees when first 
considering a vehicle for purchase.   

While many efforts have been focused in improving 
product design, relatively few efforts have been focused on 
improving vehicle launch, specifically as it pertains to the body.  
Increasing body quality during launch results in increased 
customer satisfaction.  A recent study of 14 vehicles found a 
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strong correlation between body gaps and flush around the 
doors and customer satisfaction in fit and finish as measured by 
J D Power Initial Quality Survey [1].   

Thus, the DBDS focuses primarily on the vehicle launch 
process, which includes die tryout and assembly system 
validation (see Fig. 1).   
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Figure 1.  Auto Body Development Cycle 

Detailed engineering design of individual parts and 
components begins following design freeze.  This typically 
includes a finite element analysis (FEA) of the nominal design 
to examine stresses, vibration, crash testing, etc., as well as a 
tolerance analysis to determine how the components will fit.  
This latter analysis often involves identifying designs that are 
sensitive to variation and making the design more robust by 
changing and redesigning parts to reduce geometric effects.  
Once the individual part design is set, it is released for 
“tooling” (tool release – i.e. the process of constructing the 
stamping dies), and the functional build process begins. 

Functional build is a critical process in launching a vehicle, 
whereby individual prototype parts are stamped and then sent to 
a central location to be assembled into a prototype vehicle body 
[2].  Since production tooling is often not yet available, the 
body is fastened with screws and rivets; hence it is called a 
“screwbody.”  The screwbody is examined by experienced 
experts who must decide whether gaps and interference 
conditions between individual parts are sufficient to warrant 
changing the dies, the welding tooling, clamp locations, etc.  If 
it is decided that a change is warranted, then the dies may have 
to be returned to the supplier to be changed.  If a change is not 
1 Copyright © #### by ASME Copyright © 2005 by ASME



warranted, then the specifications may be changed to match the 
part shape.  This usually involves a uni- or bi-directional 
opening of the part tolerances.  The process is then repeated 
after the changes have been implemented.  It is not uncommon 
to have three or more functional build evaluation bodies during 
a vehicle launch, which is costly and time consuming.   

The next evolution of functional build is virtual functional 
build (VFB).  A key enabling technology is optical 
measurement technology.  There are a variety of technologies 
ranging from laser scanners, such as Perceptron’s ScanWorks 
[3], to white light systems, such as Cognitens’ Opticell [4], and 
holographic systems, such as Coherix’ ShaPix [5].  These 
technologies provide precise part representations in virtual 
form.  Stamped parts exhibit significant physical differences 
from their CAD nominal values due to factors in the tooling 
and forming processes, which is why the optical data is so 
critical.  Rather than sending physical parts to a central location 
to be assembled, suppliers optically measure their parts and 
send the virtual part representation to a central web site.  Then 
the virtual parts are assembled, and the problem areas are 
identified.  The major advantage of virtual assembly is one is 
freed from logistical requirements of having all parts sent to a 
central location at a scheduled time.  Coordinating the timing 
and shipment of up to 30 different suppliers and hundreds of 
different parts is extremely difficult.  Also, the screwbody 
process itself takes generally 4 to 6 weeks to complete.  If 
critical parts are delayed, then the build can be further delayed.  
VFB can be completed in a far shorter amount of time.  
Assembling the virtual part representations is much faster than 
physically placing parts in fixtures and riveting or screwing the 
parts together.   Furthermore, any part that has not yet been 
manufactured may be replaced by its CAD nominal as a best 
guess for what the part will look like.  Virtual functional build 
saves the time and cost of assembling a physical prototype, and 
allows users to create many more virtual prototypes than 
physical prototypes.  This is particularly important during the 
iterative die tryout process.  The capability to quickly evaluate 
the effect of a die change on the body assembly is a functional 
evaluation of the part, as opposed to a pure specification based 
evaluation.   

VFB is in its infancy, and there are many process issues 
that must be addressed, such as purpose of the VFB, 
information requirements prior to measurement, fixturing 
requirements, etc.  For example, is the purpose of the 
measurement to check the part dimensions relative to their 
CAD nominal dimensions, or is the purpose to determine 
whether the part will cause a problem during assembly?  The 
answer to this question may affect how one fixtures the part.  If 
the purpose is to compare the part relative to part nominal, then 
one might want to fixture the part in as free a state as possible 
while still ensuring repeatable results.  A comparison of the 
virtual part with the CAD nominal file would show where dies 
might need to be adjusted to achieve a better part.  If the 
purpose is to determine assemblability, then one might want to 
fixture the part as it would be in the assembly tooling (i.e., 
completely overconstrained).  Displaying parts in body position 
would then show gap and interference conditions as one would 
expect to see during assembly.   

However, VFB as described above is not able to predict the 
dimensional quality of the assembly.  Even in the previous 
example, where the virtual parts are placed in body position, 
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one would not be able to predict the dimensions of the resulting 
assembly, because simple visualization cannot account for the 
springback that occurs after welding and the tooling clamps are 
released.  This requires the integration of tolerance analysis and 
FEA simulation.  Most tolerance analysis models are Monte 
Carlo simulation based and assume rigid parts, i.e., the 
assembly process does not affect the dimensional quality of the 
parts, which is not true of body assembly.  Tolerance analysis 
models begin with a nominal representation of the parts and 
assembly tooling, apply manufacturing variation to the part and 
tooling features (from design specifications or actual 
manufacturing data), simulate the assembly process in the 
appropriate sequence, and output the desired measurements.  
The output is typically a distribution and a sensitivity analysis 
for each measurement.  Integration of FEA models allows the 
tolerance simulation to take elastic deformation of the parts 
induced by spot welding into account.  The software typically 
does not account for plastic deformation, and hence heat 
distortion effects from welding are not modeled.  Conceptually, 
the parts are assembled in the software. Weld points are 
identified and the parts are forced into full contact at those 
points. These points are held as boundary conditions.  Then the 
FEA program minimizes the stress in the assembly by changing 
the shape of the part according to the boundary conditions.    

Several groups have developed a joint FEA-dimensional 
variation simulation engine: General Motors (GM) has 
developed one for internal use; Dessault Systems released such 
an engine in their Catia V5 product [6]; and UGS PLM has 
incorporated this functionality in their VisVSA V5.1 product 
[7].  Future versions of the software will be able to predict the 
amount of residual stress in a functional build assembly. 

With these new optical measurement and simulation tools 
it is possible to virtually assemble and predict dimensional 
quality including variation.  Thus, engineers will have a tool to 
understand dimensional problems with actual body parts during 
launch.  Despite the large opportunity to improve timing and 
reduce cost through these two technologies, many of these 
gains will be difficult to achieve due to the following: 

1. System complexity: Designers will need to make 
decisions in concert.  Any decision made on one part 
could have an impact on other adjoining parts.  For 
example, a change on a rear reinforcement rail to 
ensure it will assemble with a rocker panel can also 
impact how the rail fits with the wheel housing.   

2. Excessive Engineering Change Orders (ECOs): There 
are too many ECOs due to a lack of understanding by 
product designers of what design features and changes 
to design features will have a true impact on the 
assembly of individual parts, as well as the function of 
the assembly itself.  A better understanding of the 
impact of design changes on manufactured assemblies 
and their variation should lead to a significant 
reduction in ECOs, a common disruption to a smooth 
and timely vehicle launch.   

3. Experiential decision making: Current decision 
making processes in functional build (whether 
physical or virtual) are based on the experience and 
memory of individuals who have participated in 
previous programs.  This experience requires years of 
hands-on practice with die making, welding, and hand 
assembly of panels; a knowledge base that is rare and 
2 Copyright © #### by ASME Copyright © 2005 by ASME



becoming rarer as a large portion of the work force 
reaches retirement.  The quality and speed of decision-
making can be drastically improved through data or a 
quantitative understanding of cause and effect 
relationships in the system.   

4. Communication and coordination of supply chain: Too 
much time and cost is wasted on tooling buyoff and 
part validation due to unpredicted manufacturing 
variation, poor communication between suppliers and 
the customer, and lack of available information. 

5. Distributed knowledge: Effective solutions to 
problems and their cost and time impact on the 
program is generally distributed in the supply base.  It 
is difficult to identify the suppliers with the pertinent 
knowledge and evaluate the tradeoffs between 
competing knowledge. 

The DBDS will overcome many of these problems by 
helping engineers identify and evaluate solution alternatives 
based on proven historical cases.  The DBDS closes the design 
loop during the manufacturing validation phase, using 
functional build concepts.  The DBDS builds upon the 
knowledge and experience gained during vehicle launch 
programs and applies them to simulated assembly models based 
on actual scanned parts.   

THE DBDS 

The Digital Body Development System (DBDS) is depicted in 
the blue box in the lower half of Fig. 2 and consists of 3 major 
subsystems: 

1. Data Preparation and Repository Module (DPRM)  
2. Virtual Assembly and Simulation Engine (VASE). 
3. Solution Generation and Evaluation Module (SGEM)  

 

Graphical Feedback 

Data Preparation and 
Repository Module 

Hundreds of Tool Design & Construction Suppliers 

Prototype 

Tools 

Tooling Tryout 
at Die Source 

Virtual Assembly 
Simulation Engine 

Tooling Tryout 
at Home Line 

DBDS 

D
es

ig
n 

/ C
A

D
 

Solution Generation and 
Evaluation Module 

Scanned Part and Tooling Data 

 
Figure 2.  Schematic of Digital Body Development 

System 

The system begins by collecting information in the Data 
Preparation and Repository Module (DPRM).  The module acts 
as a central collection facility for all data in the system.  It 
checks for data consistency and formatting before sending the 
data onto VASE or allowing other parts of the system to access 
the data.  It also houses the database of historical problem-
solution cases, which is used by the SGEM.  In addition, the 
DPRM contains a set of project management and 
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communication tools to aid in coordinating the product 
validation and launch process among the various suppliers and 
the OEM.   

The VASE then simulates the assembly function and 
generates dimensional and residual stress distributions for 
specified measurements across the vehicle body.  UGS PLM 
VisVSA V5.1 is the VASE used in the DBDS.  Generally there 
will be several hundred assembly measurements (simulation 
outputs) per vehicle.  These simulation results are then sent to 
the Solution Generation and Evaluation Module (SGEM).   

The SGEM groups problems that have similar 
characteristics, such as measurement location, measurement 
type and direction, and common parts involved in the 
measurements, into problem areas.  The problem areas are then 
ranked according to the problem magnitudes as well as the 
relationship between problems.  Examples of problem 
relationships are problems that have the same part supplier, or 
passed through the same assembly steps.  These relationships 
are similar to hypotheses of root causes.   

The purpose of the grouping and ranking is to 
1. reduce the problem space and identify the critical 

problems that will drive the solution generation and 
evaluation module, and   

2. begin to introduce information that relates problems to 
root causes.   

Using a database of past solutions structured according to 
problem relevance criteria, an agent based case retrieval 
network (CRN) is used to identify the best solution to the given 
problem areas.  These solutions are sent to the VASE and 
automatically implemented in the model to evaluate their 
functional effectiveness with regards to dimensional quality and 
residual stress. The system continues to iterate on various 
solutions using local change rules to modify solutions until it 
finds solutions that satisfy the design requirements.   

The DBDS does not explicitly determine the root cause of 
the system.  Instead, the root causes are implicitly embedded in 
the problem area groupings, the relationships between problem 
areas, and the relevance edges in the CRN.  The SGEM looks 
for the solutions that best map to the causal structure.  In 
essence, one is looking for the best solution that maps into the 
problem characteristics under the assumption that problems 
with the same underlying causal structure have the same root 
cause, or at least, can be resolved by the same solution.   

The DBDS is intended to be used iteratively throughout the 
vehicle program.  For example, every time a die is created or 
modified, such as during prototype, die tryout at the die source, 
and die tryout on the home line, the system would be invoked 
(see Fig. 2).  Scanned part images would be sent to the DPRM 
and converted to a format suitable for use by the VASE.  
Simulating the scanned part files, instead of the nominal CAD 
files would provide information on the effectiveness of die 
changes and need or lack of need for further changes.  The 
DBDS would determine whether additional changes are 
necessary, what they should be, and their expected outcome on 
the assembly as determined from simulation. 

ADAPTIVE HEURISTIC SEARCH 

The DBDS treats the generation of solutions to problems 
identified in the current design as a search problem in the high-
dimensional space of possible modifications to the design 
guided by a fitness function. Any point in this abstract search 
3 Copyright © #### by ASME Copyright © 2005 by ASME



space is a set of parameterized changes to the current design. 
Computing the fitness of such a set of changes requires the 
application of these changes to the design, and the simulation 
and analysis of the resulting new design comparing it with the 
current design. 

In [8] Brueckner and Parunak present an experimental 
application of their agent-based Adaptive Parameter Search 
Environment (APSE), which performs a heuristic parallel 
search across an abstract space of input parameters to an 
arbitrary simulation model guided by a fitness function defined 
over metrics reported during the execution of the model. The 
DBDS is an application and extension of APSE in which sets of 
design changes are treated as input parameters to the virtual 
assembly of a car body and in which the search is guided by the 
design intent of the functional build process. 

The Solution Generation and Evaluation (SGE) module of 
the DBDS hosts an APSE search agent population, whose task 
it is to explore the space of possible changes to the base design 
for improvements that reduce or remove the problems observed 
in its execution. Thus, the changes to the base design are input 
parameters to a black-box simulation and a predefined fitness 
function measures the degree to which the now modified design 
meets the design intent. 

The APSE search agents collaboratively explore the space 
of potential solutions (model parameters) and evaluate them 
through successive simulation runs. Using a Particle Swarm 
Optimization (PSO) algorithm [9] combined with probabilistic 
local hill climbing, the agents coordinate their activity so that 
computing resources (simulation runs) are focused on exploring 
the most promising regions of the search space. 

Given the complexity and massiveness of the search space 
that the DBDS must explore in a given optimization run, the 
heuristic of the APSE search agents was enhanced.  While 
search agents in APSE are guided only by the fitness of the 
currently known solution candidates (points in the abstract 
search space), the DBDS provides two additional sources of 
guidance for the distributed search (see Fig. 3). The first source 
of solution candidates is the human design team. At any point 
during the search process, human experts may look at the 
problem symptoms and the solutions the DBDS has explored so 
far and suggest another solution to the system. Solutions may 
also be suggested by the solver, a multi-agent system that seeks 
to match the problem symptoms to the descriptor of solution 
cases recorded in a case base.  The retrieval is guided by the 
problem symptoms observed in the execution of the current 
design and by the fitness of solutions that have already been 
evaluated by the search agents. 
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Figure 3.  The DBDS Performs a Parallel Heuristic 

Search with Human and Case-Based Guidance 
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These two additional sources of creativity were 
incorporated into the search process by enhancing the APSE 
search agents’ behavior. In APSE, an agent explores the search 
space through a series of short-range moves that are guided by 
hill-climbing and PSO heuristics. In the DBDS, a search agent 
monitors the performance of its short-range movement heuristic 
(rate of improvement over time) and may decide to abandon its 
current region in search space through a long-range jump 
beyond the local correlation distance of the fitness function. 
The destination of the jump is a solution candidate provided by 
the human design team or the case-based solver. Figure 4 
illustrates the emerging agent trajectory in an abstract search 
space. 

!� �"

!� �"

�
���

��# � ��� �

�
���

��# � ��� �

�
���

��# � ��� �

�����  

�" �� �

�
�� �	
�

�� � � �����

�� �� 
����

�
�� �	
�

�� � � ����� ���

 � ���

� � � �

� ����  

� � ���

�
����� � 	� ��

�� ��
� ��

 �� �	��	�

 
Figure 4. Agents move and jump through the search 

space guided by local heuristic, human input, and case 
knowledge 

The distinction between a local improvement heuristic and 
a global jump to externally suggested solution candidates is 
sufficiently general that other solution approaches can be 
implemented. Just as the DBDS currently implements a case-
based approach to the solution of problems with the base 
design, other (e.g., rule-based, model-based, etc.) approaches 
could be implemented independently and feed into the decision 
process of the search agents. 

SWARMING CASE RETRIEVAL 

Today’s car body development process heavily depends on 
human expert knowledge and experience.  The DBDS is a 
decision support system that has the ability to discover new 
solutions on its own through a heuristic search and evaluation 
in simulation, while at the same time utilizing and capturing 
human creativity and expertise to move from experience-based 
to data-driven design. 

The SGE module of the DBDS includes a dynamic solver 
that analyzes problems with the base design as they manifest 
themselves in observable symptoms during the virtual assembly 
and that suggests solutions to these problems drawn from a set 
of problem-solution cases. The solver is integrated with the 
heuristic search process by suggesting solution candidates to 
the APSE search agents for their next long-range jumps and by 
modifying the case retrieval process based on the fitness of the 
solutions that have already been explored (Fig. 5). 
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Figure 5. The dynamic solver modifies the solution 

candidates that it suggests to the search agents based on 
the progress of the exploration of the search space 

The ongoing asynchronous interaction with the search 
agents and the continuous addition of fitness evaluations of new 
solution candidates requires a dynamic update of the case 
retrieval. This led to an agent-based any-time approach that 
continuously integrates changes in the external circumstances 
without having to restart its reasoning process from scratch. 
The following details of the operation of the solver top down. 
First, the adaptive any-time process that manipulates the 
description of the current problem symptoms to provide a high-
quality retrieval of high-performance solutions will be 
presented. This is followed by a description of the specific 
internal mechanics of the fine-grained agent system that drives 
the adaptive modification of the current problem description. 

Linking Emergent Clustering and Spreading Activation Case 
Retrieval 

The virtual assembly of the base design by the VASE 
module results in a large set of uniquely identified 
measurement points on the assembled car body that are either 
within or outside specified tolerances. Just as a fever, a cough 
and a runny nose are possible symptoms of an underlying viral 
infection, so are patterns of deviations at pre-defined 
measurement points on a (virtually) assembled car body 
symptoms of specific underlying problems (root causes) with 
the design. 

The dynamic solver seeks to match the currently observed 
symptomatic patterns to those of problems encountered in the 
past, whose solution is recorded in the case base.  The case base 
is organized into a simplified Case Retrieval Network (CRN) 
[10], which represents basic components of the problem 
description and the associated solution as individual nodes in a 
spreading activation network. The nodes representing problem 
components are called Information Entity (IE) nodes and a 
solution is stored in a so-called case node. All IE nodes that 
describe the problem solved in a specific solution case are 
linked to the respective case node through weighted relevance 
edges. The retrieval process first places an activation onto 
individual IE nodes depending on their match to the current 
problem symptoms and then propagates the activation through 
the relevance edges to the case nodes. The relative activation of 
the individual case nodes provides an ordering of the recorded 
solutions with respect to their relevance to the current problem. 

The goal is to abstract away from the specific locations and 
count of measurement points provided by the simulation by 
identifying symptomatic regions on the virtual car body that 
 

may be expressions of the same underlying problem. For 
instance, if a door is set slightly off-center into its frame, one 
may find several disconnected regions along the frame in which 
pre-defined measurements are out of tolerance (e.g., gaps, 
interferences). To that end, the solver executes a fine-grained 
multi-agent system that continuously rearranges measurement 
points into clusters that form components of the problem 
signature (Fig. 6). The currently emerging problem signature is 
matched against past problems’ signatures in the case base to 
provide a relevance measure of the available solutions. This 
relevance measure guides the selection of the next solution 
candidate upon request of an APSE search agent. A case is then 
selected probabilistically, based on its current normalized 
relevance. 
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Figure 6. Clustering of Measurement Points into 

Signature Components  

The quality of the case retrieval process is high if there is 
only one case (or very few cases) with a significant probability 
to be selected.  Otherwise, a case may as well be randomly 
selected from the entire case base. The current retrieval quality 
is determined from the Case Selection Entropy (CSE) metric, 
which is the Shannon (Information) Entropy [11] of the case 
selection probabilities. The current CSE, resulting from the 
interaction of the current arrangement of measurement points 
with the Case Retrieval Network, may modify the behavior of 
the agents in the next clustering cycle.  Similar entropy 
measures defined over the current preferences of an 
autonomous decision maker (here case selection) have been 
used before [12, 13] to estimate the current information these 
preferences actually convey and to subsequently adapt the 
decision process if necessary. 

Figure 7 illustrates the tight feedback loop (black) between 
the ongoing clustering of measurement points and the current 
case relevance ordering provided by the CRN. Through this 
feedback, the identified problem regions are modified to match 
past experience recorded in the case base more closely while 
maintaining a close tie with the actual problems observed in the 
simulation. 
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Figure 7. Adaptive Case Retrieval Guided by Retrieval 

Quality and Solution Performance. 

The clustering process is also influenced on a larger time 
scale by the observed performance of solutions that have been 
explored by the APSE search agents (white loop in Fig. 7). If a 
solution case is adopted by a search agent in a long-range jump, 
the DBDS evaluates the fitness of the changed car body design 
in terms of the reduction in problems compared to the base 
design and the estimated cost in implementing these changes. 
The fitness of all solution candidates proposed by the solver is 
fed back through the Case Retrieval Network (activating case 
nodes and spreading to IE nodes) to attract the clustering 
mechanism away from or towards specific arrangements. 

Emergent Clustering 
The output of the simulation is a cloud of values for 

predefined measurement points. Each point is associated with 
geometric coordinates on the car body, but it also carries 
additional context values, such as part features with which it is 
associated, assembly process steps that came in contact with the 
part, or the supplier providing the part. Thus, a measurement 
point is located in a high-dimensional space that combines the 
geometric and context dimensions. Through the additional 
context, points that are related in the process but not necessarily 
in geometry can be associated to the same signature 
component. 

 
Figure 8. Possible Cluster Arrangements (black) for the 

same Original Measurement Points (white). 
 

The goal is to start from the original locations of the 
measurement points and rearrange the points into arbitrary 
clusters while trying to keep each point close to its original 
location. As Fig. 8 illustrates, there are a number of possible 
arrangements that meet these qualitative objectives, as there is 
no prior assumption on the particular number or size of clusters. 
The emergent clustering algorithm is designed to potentially 
visit all these arrangements (with varying probability), and the 
feedback from the Case Selection Entropy metric and the 
currently known solution fitness push the clustering system out 
of unfavorable configurations. 

Emergent any-time clustering is one of the prime examples 
of emerging functionality through stigmergic coordination in 
large-scale fine-grained multi-agent systems. Nest sorting [14], 
is an instance of emergent clustering observed in social insect 
systems. In this case, independent agents (ants) pick up or drop 
off passive objects with a dynamically computed probability. 
This behavior has been replicated in collective robotics (see for 
instance [15]). An alternative approach to clustering is to give 
the initiative to the objects themselves, which then reason about 
their current local arrangement and move about in space. 
Parunak, et al. successfully applied this approach to create 
large-scale, self-organizing document bases [16] and the 
approach was applied here as well. 
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Figure 9. Forces represent agent objectives in clustering  

In the emergent adaptive clustering algorithm, each point is 
assigned an agent, which moves through the space of geometric 
locations and additional context. The sum of two dynamic force 
vectors, representing the two objectives in the rearrangement, 
determines the trajectory of an agent. The first force vector 
(“Home Force” in Fig. 9) attracts the agent back to the original 
location of the measurement point. This force increases with 
distance. The second force vector is the sum of individual 
component vectors (“Cluster Force” in Fig. 9), which each 
attract the agent to the location of another nearby agent. The 
strength of this force decreases with distance. The rates in 
which the forces change for changing distances are dynamic 
parameters of the system. 
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Figure 10. Iterative Local Force Vector Calculation 
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In each cycle, each agent calculates the home force and the 
cluster force vector from the position of the agents in the 
previous cycle. The vector sum of these two forces determines 
the direction into which the agent relocates in this step. The 
length of the step is the length of the combined vector, but 
limited to a relatively small step-length value (Fig. 10). 

If the force calculation algorithm in the agent were 
deterministic and used only constant scaling parameters, then 
the system would quickly stabilize on one arrangement that 
minimizes the “tension” among the objectives. To avoid 
unstable minima and to explore a variety of nearby cluster 
configurations a small random component is added to the 
individual relocation calculation. 

Qualitatively different cluster configurations are obtained 
through the feedback of the current retrieval quality and the 
solution performance, encoded in the Case Selection Entropy 
(CSE) and the fitness of solution cases. 

The CSE metric offers a global evaluation of the value of 
the current point arrangement for the high-quality (non-
random) retrieval of a solution from the case base, but it does 
not provide any guidance on how the arrangement should be 
changed to achieve a higher retrieval quality. Since higher CSE 
values correspond to low retrieval quality, exploration of new 
configurations over the exploitation of current clusters are 
encouraged by increasing the impact of the random component 
in the agents’ trajectory calculations. 

The fitness of solution cases that have been explored by the 
APSE search agents can be translated into directional guidance 
for the clustering agents. Before each cycle of the emergent 
clustering algorithm, the fitness of all cases (zero if not yet 
explored) is propagated backwards through the CRN to the IE 
nodes that represent regions of high point concentration 
(clusters) recorded with these past cases. Solution cases that led 
to an improvement in the design communicate a positive 
activation to their IE’s while those that actually made the 
problem worse send a negative activation. 

The positive or negative activation of IE’s in the Case 
Retrieval Network translates to additional attractive or 
repulsive force components that steer points towards or away 
from regions in measurement space.  Lenz, et al. applied a 
similar back-propagation approach in CRN’s to guide the 
interactive diagnosis of failures in computer hardware [17]. 

EXAMPLE – 2D DOOR STUDY 

The DBDS will be explained based on a simple 2D door 
model that was created for development purposes.  The door 
model was then used to test the signature generation process for 
historical cases in the case base and the effectiveness of the 
retrieval process for the appropriate solution to the current 
problem. 

VisVSA Model 
The first step is to create a VisVSA simulation model of 

the assembly (see Fig. 11).  There are 18 Functional 
Requirements (FRs) the design must satisfy: 18 gap 
measurements around the front and rear doors.   
 

 
Figure 11.  2D Door Model 

The 2D door model consists of a body side, a front door 
and a hanging fixture, a rear door and a hanging fixture, 
associated move statements that locate the doors to the 
bodyside, and 18 measurement statements.  The body and doors 
have datum or locating features and the features associated with 
the FRs.  These dimensional features can vary in the X and Z 
direction.  Each variation is a dimensional parameter (DP) that 
is changed in each Monte Carlo simulation run.  Thus, there are 
2*18 = 36 DP on the doors and body side. 

The assembly sequence is to first assemble the front door 
to the body side using the front door hanging fixture, and then 
to move the rear door to the body using the rear door hanging 
fixture.  Fig. 12 shows the front door located by a 4-way 
locating hole in the front and a 2 way locating slot in the rear.  
The hanging fixture aligns these locators with the 
corresponding locating features on the body.  There are similar 
locating features on the rear door.  To simulate the variation 
associated with the hanging process, each of the 6 fixture DPs 
and the 3 DPs on each part were varied.  Thus, with the 36 DPs 
from the parts and the additional 2*6 + 3*3 = 21 DPs from the 
hanging process there are a total 57 DPs in the model.   

FR1 
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FR5 FR6 FR7 FR8 

FR9 FR18 
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FR13 FR14 FR15 

FR16 

FR17 
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Figure 12.  Front Door and Body Locating Features.   

VisVSA is a Monte Carlo based simulation tool.  Each of 
the 57 DPs is allowed to vary randomly according to a normal 
distribution, which centered about the nominal DP value and 
which variation is a function of the specified DP tolerance.  
Each simulation run, a random number is generated for each 
DP.  The model then executes the assembly sequence and 
records the 18 FR values.  This process is repeated several 
thousand times to generate a distribution of FR values.   

Another output of the model is a sensitivity analysis.  Each 
DP value is allowed to vary one-at-a-time between its high and 
low specification value, and the corresponding FR values are 
recorded.  From these experiments it is possible to compute the 
sensitivity of each FR to each DP.  This results in eighteen 57-
dimensional vectors.  

The Case Base 
The case base consisted of 100 randomly created problem-

solution cases. Each case was generated by randomly selecting 
a random number of DP features in the model and randomly 
varying their nominal coordinates. This ‘problem’ model was 
executed to provide the pattern of deviations from the 
functional requirements as measured in the FR features.  Each 
FR deviation from the problem case was then enhanced with 
contextual information: the 57-dimensional vector of sensitivity 
values of the particular FR.  The emergent clustering 
mechanism was then applied to the combined FR pattern 
deviations and contextual information to create a characteristic 
signature for the problem.  The associated solution to the 
problem was simply the inverse of the randomly generated 
model modifications (a.k.a. a naïve solution).  The problem 
signature and the solution constituted a single case in the case 
base.  The process was then repeated 100 times to generate 100 
problem-solution cases. 

The 100 randomly deviated models produced 100 
distinctive patterns of deviated FR values.  Even though each 
case was associated with the same contextual information 
(sensitivity vectors), the emergent clustering mechanism 
created 100 (partially) distinct signatures – that is, for each 
problem pattern, the point agents of the case cluster solver 
converged on different cluster locations.  Therefore one can 

4/2 way for 
front door 

4/2 way for 
bodyside 
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conclude that the clustering mechanism preserves the salient 
information about the unique problem symptoms while 
reducing the overall dimensionality of the problem description.  
Figure 13 plots the center of gravity for each case signature in 
the case base, illustrating the diversity in the signature patterns 
which is required for a meaningful retrieval process. 

Problem Case 1 Evaluation Exercise 
The functioning of the DBDS will be explained in detail, 

using Case 1 as an example.  Case 1 is presented to the DBDS 
as a base design.  Case 1 has error in it and is also a case in the 
case base.  Thus, a successful evaluation exercise will run Case 
1, create a characteristic signature, identify Case 1 in the case 
base as the most appropriate case, retrieve its associated 
historical solution, apply it to the current problem and 
determine that the problem has been resolved (deviation from 
functional specification is sufficiently reduced).  

The problem recorded in case 1 expressed itself as a 
pattern of deviations, di, from the expected values of the output 
measurements defined in the model.  The error level of a design 
is the length of the vector spanned by the deviations in the 
output measurements (see eq. (1)) which, in the case of the base 
design, computes to 2.45 (see Table 1). It is the formal goal of 
the DBDS to minimize this error and, thus, meet the functional 
requirements. 

 �
2
id  (1) 

Table 1. Base and Modified Design Deviations 
 Base Design Modified Design 

 di di
2 di di

2 

FR1 -0.62 0.3790 0.00 0.0000 
FR2 -0.57 0.3213 -0.02 0.0004 

FR3 -0.49 0.2393 -0.02 0.0004 

FR4 -0.37 0.1353 0.01 0.0001 

FR5 0.07 0.0047 0.01 0.0001 

FR6 0.12 0.0144 0.00 0.0000 

FR7 -0.65 0.4284 0.01 0.0001 

FR8 0.23 0.0545 0.00 0.0000 

FR9 -0.96 0.9174 0.00 0.0000 

FR10 -0.22 0.0492 0.00 0.0000 

FR11 -0.33 0.1111 -0.02 0.0004 

FR12 0.68 0.4587 -0.01 0.0000 

FR13 0.61 0.3661 -0.01 0.0000 

FR14 -0.11 0.0128 0.00 0.0000 

FR15 -0.01 0.0002 0.01 0.0001 

FR16 0.03 0.0012 0.03 0.0008 

FR17 0.72 0.5125 0.01 0.0000 

FR18 1.41 1.9833 0.00 0.0000 
error =   2.4473  0.0496 
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Figure 13. Emerging Signature (red clusters). 

The case cluster solver is shown in Fig. 13.  The pattern of 
output measurement deviations from the base design is handed 
to the case cluster solver (blue points), which uses them to 
instantiate point agents in the emergent clustering process that 
extracts the problem signature. The red points are the clusters 
that emerge in the process. These locations will be treated as 
the problem signature. This signature is matched against 
signatures of historical cases in the case base, and Case 1 offers 
the best match (rank 1, 20% selection probability). 

Extracting the historical solution of Case 1 from the case 
base at the request of a search agent creates a new solution 
candidate. This candidate proposes a modified design, which is 
automatically implemented and evaluated by the DBDS. The 
resulting pattern of deviations (see Table 1) results in an error 
level less than 0.05, which is within the level of noise generated 
by the Monte-Carlo simulation of the assembly. Thus, Case 1 
solves the problem posed by the base design. 

Experimental Results 
Ten experiments were conducted to test the effectiveness 

of the case retrieval process.  For each experiment, one case in 
the case base was declared the “base design” of a DBDS run. 
Thus, the design problem represented in the base design was 
also in the case base as a historical case.  The purpose of these 
experiments was to prove that the DBDS would be able to 

1. Retrieve the historical case most appropriate to the 
current problem as it had been encountered before, and 
to do so with likelihood significantly higher than 
random 

2. Implement the solution associated with that case and 
demonstrate that the problem is solved. 

Table 2 shows the result of the retrieval process of the case 
cluster solver for the ten experiments. The first column 
indicates which of the randomly deviated models was used as 
the base design, that is, which case in the case base should be 
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the best match to the given problem. For simplicity, the first ten 
problem instances were selected for the testing exercise. 

The second column shows the rank of the problem 
similarity metric that was assigned to the case that matched the 
current problem.  If the SGEM worked perfectly each 
experiment would have a rank of “1” in this column.  The third 
column shows the actual retrieval probability assigned to each 
experimental case. A high probability combined with a low 
rank number indicates the case clearly stands out among the 
cases in the case base.  A low probability combined with a high 
rank number indicates several (many) cases would be 
considered a good match. 

For example, in the first experiment the matching case in 
the case base was the first case with a selection probability of 
20%.  The other 99 cases all had selection probabilities less 
than 20%, and the sum of all their probabilities was 80%.  This 
means that average selection probability for the other cases was 
less than 1% (80%/99), and this particular case was very 
different from the other cases.  By contrast in experiment 2, the 
matching case was the second case with a selection probability 
of 4%.  Assuming the selection probability for the first case is 
only somewhat higher than that, say 5%, the average remaining 
cases have an average selection probability of about 1% 
(91%/98).  Thus, there are many cases in the case base similar 
to the one used in experiment 2. Despite these similarities the 
DBDS was able to identify the correct case within 2 selections.  
In general, the DBDS found the correct solution on the first try 
in 60% of the experiments, on the second try in 20% of the 
experiments, and on the third try in the remaining 20% of the 
experiments. 

CONCLUSION 

Car body development is the most costly step in the launch 
of a new vehicle and even small improvements of this process 
may yield high gains for the automotive industry. This paper 
presents the Digital Body Development System (DBDS) – a 
decision support system for the car body development team – 
which is an extension of the agent-based Adaptive Parameter 
Search Environment (APSE) presented in [8]. The DBDS is 
based on a modular architecture, which makes the required 
activities of the evaluation of the fitness of solution candidates 

Table 2.  Experimental Results of 10 DBDS 
runs.   

Experiment Rank Selection Probability 

1 1 20% 

2 2 4% 

3 1 45% 

4 1 5% 

5 2 9% 

6 1 7% 

7 3 3% 

8 1 21% 

9 3 4% 

10 1 4% 
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(simulation, cost estimate) transparent for the APSE search 
agents exploring the space of changes to the current design of 
the car body. 

The primary extension of APSE, besides its application to 
a highly complex domain, is the integration of external 
guidance into the local search heuristic of the agents. The 
DBDS enhances the decision process of the individual agent.  
The enhanced agent tracks the performance of the local 
improvement process (moves) and decides whether to abandon 
its current region (jump) in favor of solution candidates 
suggested either by the human design team or a novel adaptive 
case-based solver. 

The case-based solver is a complex adaptive system that 
interacts with the APSE search agent population, providing it 
with solution candidates that may address currently observed 
design problems and adjusting its recommendations based on 
the fitness of the solutions that have been explored already. The 
solver links a fine-grained agent system that continuously 
modifies the description of the current problem with a Case 
Retrieval Network that records solutions to past problems. The 
retrieval of solutions is refined by the agents’ modification of 
the problem description, driven by the currently estimated 
quality of the case retrieval and the performance of selected 
cases. 

The case based solver was implemented and integrated 
with VisVSA, a Monte Carlo based assembly simulation 
engine.  The system was then tested on a simple 2-D door 
model.  A case base consisting of 100 randomly generated 
problem cases was used to represent the history of cases from 
past vehicle launches.  Ten problems from the case base were 
selected as the base problem currently encountered, and the 
DBDS successfully matched all cases and solved each problem 
within three or fewer attempts.   

The DBDS is the focus of an ongoing NIST/ATP-
supported Joint Venture of 14 organizations.  A patent 
application has been filed for the case based solver presented 
here. 
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